	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEM		TECHNOLOGY	ť
		DEPARTMENT OF MECHANICAL ENGINEER	ING		
	Class Test: I	Month	: December		
5	Sem- 5 th Sem	Subject: ICE			
and the second second	– C037511(037)	Time Allowed: 2 hrs		Marks: 40	
Note: - questio		Parts (a) are compulsory of each question. Solve any two	parts from	(b), (c) and (d)	of each
Q. No		Marks	Levels of Bloom's taxonomy	со	
		Unit – I			
1.A	What is the norma engine?	l range of compression ratio for S.I. and C.I.	4	Remembering	CO1
1.B	speeds) and explain	ning diagram of 4 stroke petrol (both low & high in the reason why the opening and closing of inlet are not at dead centers?	8	Creating	CO2
1.C	Explain the workin and demerits?	ng of four stroke diesel engine. Discuss its merits	8	Apply	CO1
1.D	A/F ratio is 15:1. pressure and temp 60°C. Determine follows the law P	ratio of an engine working on otto cycle is 6 and The Calorific value of the fuel is 44 Mj/kg. The p at the beginning of compression is 1 bar and the maximum pressure in cycle if compression V $^{1.3}$ = C And C _v = (0.71+20 x 10 ⁻⁵ T) KJ /kg K What would be the maximum pressure if C _r is	8	Analyzing	CO2

	Unit – II			
2.A	What do you mean by detonation and knocking?	4	Analyzing	CO2
2.B	Explain the stages of combustion in SI engines and the effect of various engine variables on all the stages in details?	8	Apply	CO1
2.C	Explain the stages of combustion in CI engines and the effect of various engine variables on all the stages in details?	8	Apply	CO3
2.D	What is the basic requirement of I.C. Engine fuels? Explain pre- ignition, antiknock rating of fuels, octane number?	8	Creating	CO2

	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEN	IENT AND 1	TECHNOLOGY	2
		DEPARTMENT OF MECHANICAL ENGINEER	UNG		
(Class Test – I	Session- 2022-23	Month	- September	
	Sem- 5 th	Subject- Fluid Machines	,	2	
Code	:- C037512(037)	Time Allowed: 2hr.	Max	Marks: 40	
	1.first Question (A) f e any two from B,C,D	rom both unit are compulsory. of each unit.			
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО
		Unit – I			
1.A	ii. Mome iii. Bluff b	ary layer. ntum Thickness.	4	Remembering	1
1.B	of sp. gr. 0.9 and with a velocity of	m length and 400 mm wide is immersed in a fluid kinematic viscosity $10^{-4} \frac{m^2}{s}$. The fluid is moving 6 m/s. Determine (i) boundary layer thickness, (ii e end of the plate, and (iii) drag force on one side	8	Understanding	1
1.C	For the velocity p $\frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)$ Find an expressi (τ_0) , coefficient	rofile for laminar boundary layer flows given as $\Big)^2$ on for boundary layer thickness($m{\delta}$), shear stress ag force in terms of Reynolds no.	8	Analyzing	1
1.D	A jet plane havin 950 km/hr spee mechanical effici	g a wing area of 20 m ² and weighing 25 kN flies and the engine develops 8500 kW and has a ency of 60 percent. Determine the lift and drag be wind. Take specific weight of air = 12 N/m ³ .	8	Applying	1

	Unit – II			
2.A	Explain impulse moment principle.	4	Remembering	2
2.B	Derive an expression of Work done per second per unit weight of the fluid striking per second for the case of unsymmetric moving curve vane when the jet striking tangentially at one tip.	8	Analyzing	2
2.C	A jet of water of diameter 7.5 cm strikes a curved plate at its center with a velocity of 20 m/s. The curved plate is moving with a velocity of 8 m/s in the direction of the jet. The jet is deflected through an angle of 165 ⁰ . Assuming the plate smooth find: (i) Force exerted on the plate in the direction of the jet.	8	Applying	2

	(ii) Power of the jet.(iii) Efficiency of the jet.		
2.D	A jet of water having a velocity of 15 m/s strikes a curved vane which is moving with a velocity of 5 m/s. The vane is symmetrical and is so shaped that the jet is deflected through 120°. Find the angle of the jet at inlet of the vane so that there is no shock. What is the absolute velocity of the jet at outlet in magnitude and direction and the work done per unit weight of water. Assume the vane to be smooth.	Ар	2

22/12/22 3-II

	SHRI SHANKARACHA	RYA INSTITUTE OF PROFESSIONAL MANAG	GEMENT AND	TECHNOLOGY	,
	I	DEPARTMENT OF MECHANICAL ENGIN	EERING		
	Class Test: I	Session: July-January 2022	Month	n: December	
S	em- 5 th Sem	Subject: Solid Mechanics	1		
Code	- C037512(037)	Time Allowed: 2 hrs	Max	Marks: 40	
Note: -	Attempt all question. Parts	s (a) are compulsory of each question. Solve any two	parts from (b), (c)	and (d) of each q	uestion.
Q. No		Marks	Levels of Bloom's taxonomy	со	
		Unit – I			
1.A	Define strain energy, r	esilience, proof resilience and modulus of resilie	nce. 4	Remembering	CO1
1.B	A steel specimen 1.5 cm ² in cross-section stretches 0.05 mm over 5 cm gauge length under an axial load of 30 kN. Calculate the strain energy stored in the specimen at this point. If the load at the elastic limit for specimen is 50 kN, calculate the elongation at the elastic limit and the resilience.			Creating	CO2
1.C	of a simply supported l	eorem calculate the vertical deflection at the mid beam which carries an UDL of intensity w over f dity EI is constant and only strain energy of bend	full	Apply	CO1
1.D	Derive and analyse Ma	exwell's reciprocal deflection theorem.	8	Analyzing	CO2

	Unit – II			
2.A	Analyze the stresses working on pressure vessel and define the pressure vessel or shell.	4	Analyzing	CO2
2.B	What assumptions are taken in the analysis of thin cylinders? Deduce expressions for circumferential and hoop stresses. Also find change in length, diameter and volume of cylinder due to internal pressure.	8	Apply	CO1
2.C	 A cylindrical shell 2.5 long which is closed at the ends has internal diameter 250 mm and wall thickness 7.5 mm. Determine: (i) circumferential and longitudinal stresses induced in the shell material (ii) change in length, diameter of the shell if it is to an internal pressure of 1.5 MN/m². The cylinder is built up with riveted joints and the efficiencies of the longitudinal and circumferential joints are 85% and 60% respectively. Take modulus of elasticity E = 200 GPa and Poisson's ratio u =0.3. 	8	Apply	CO3
		а		

15	A thick cylinder has inner and outer diameters as 120 mm and 180 mm respectively. It is subjected to an external pressure of 9 MPa. Find the value			
2.D	of Internal pressure which can be applied if the maximum stress is not to	8	Creating	CO2
	exceed 30 MPa. Draw the curves showing the variation of hoop and radial stresses through the material of the cylinder.			

23/12/22 3-J

	SHRI SHANKARACHAR	YA INSTITUTE OF PROFESSIONA	L MANAGEM	ENT ANI	D TECHNOLOGY	
	DI	EPARTMENT OF MECHANICAL	ENGINEER	ING		
(Class Test – I	Session- July -Dec 2022		Mon	th- December	
	Sem- 5 th	Subject- Operation Resear	ch			2.
Code	e – C037531(037)	Time Allowed: 2 hrs		Ma	x Marks: 40	
Note: -	Question 1 (A) is Compu	lsory. Attempt any One question fro	om part B and (C, which o	carries 16 marks.	ý.
Q. No		Marks	Levels of Bloom's taxonomy	со		
		Unit – I				
1.A	Write the scope of operation	on research.		4	Understanding	COI
1.B	Solve By Big-M Method Maximise $Z = 3 X_1$ - Subjected to $2 X_1 + X_1 + 3$		16	Applying	COI	
1.C	Solve By Simplex Method Maximize $Z=45X_1+8$ Subjected to $5X_1+20X_2$ $10X_1+15X$ X_1, X_2	$x \le 400$ $x_2 \le 450$	• 5•	16	Applying	COI

							Unit – 11			
2.A	A Analyze the assumption of transportation model. How it is special case L.P.P?						4	Analyzing	CO2	
2.B	Solve 1 2 3 4 5	I 11 9 13 21 14	II 17 7 16 24 10	III 8 12 15 17 12	IV 16 6 12 28 11	V 20 15 16 26 13	lem	16	Applying	CO2
2.C	cells	nd the optimum solution to the following transportation problem in which the ells contain the transportation cost in rupees. Solve by Vogel Approximate tethod.						16	Applying	CO2

W, W, W, W, W_s Available F₁ 6 7 4 5 9 F₂ 8 5 6 7 8 30 F₃ 6 8 9 6 5 20 F, 5 7 . 7 8 6 10 Required 30 30 15 20 5 100 (Total) 23/12/22 3-Д Maximore 2 yr 3 - 200 Galegeriger K - 2 X - 2 - 13-1 · 1 Lange ak The second second

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND **TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Class Test: I** Session: July-December, 2022 Month: December, 2022 Semester 5th **Subject: Dynamics of Machines** Code: C037514(037) **Time Allowed: 2 Hours** Max Marks: 40 Note: - Part A of Questions 1 and 2 is compulsory, from other parts B, C and D of Questions 1 and 2, attempt any two parts. Ignore the columns of Level of Bloom's taxonomy and CO. Levels of Q. Questions Marks CO **Bloom's** No taxonomy Question - 1 (i) Differentiate between Radius of Rotation and Radius of **Governor in a Proell Governor** Remember. 1.A 4 1 Understand (ii) Differentiate between Sensitivity and Hunting The upper arms of a porter governor are pivoted on the axis of rotation, their lengths being 30cm. The lower arms are pivoted on the sleeve at a distance of 3cm from the axis, their lengths being 27cm. Mass of each ball is 6kg, and the sleeve mass is 1.B 8 1 Apply 50kg. Determine the equilibrium speed for a radius of rotation of 17cm, and also find the Effort and Power for 1% change of speed. Following particulars refer to a Proell governor with open arms: Length of all arms=200mm, distance of pivot of arms from axis of rotation=40mm, length of extension of lower arms to which each ball is attached=100mm, mass of each ball=6kg, mass of 1.C 8 1 Apply central load=150kg. If radius of rotation of balls is 180mm when arms are inclined at an angle of 40° to the axis of rotation, find equilibrium speed. Analyze the need for having different types of centrifugal 1.D 8 1 Analyze governors.

P.T.O

	Question – 2			
2.A	Explain the condition of static and dynamic balancing of rotating masses.	4	Understand	2
2.B	A shaft carries four masses A, B, C and D of magnitude 200, 300, 400 and 200kg respectively revolving at radii 80, 70, 60 and 80mm in planes measured from A at 300, 400 and 700 mm. Angles between the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. Balancing masses are to be placed in planes X and Y. Distance between planes A and X is 100mm, between X and Y is 400mm and between Y and D is 200mm. If balancing masses revolve at a radius of 100mm, find their magnitudes and angular positions.	8	Apply	2
2.C	Turning moment diagram for a four stroke gas engine may be assumed for simplicity to be represented by four triangles, area of which from line of zero pressure are: Suction Stroke=0.45x10 ⁻³ m ² , Compression Stroke=1.7x10 ⁻³ m ² , Expansion stroke=6.8x10 ⁻³ m ² , Exhaust stroke=0.65x10 ⁻³ m ² . Each m ² of area represents 3MNm of energy. Assuming resisting torque to be uniform, find mass of rim of flywheel required to keep speed between 202rpm and 198 rpm. Mean radius of rim is 1.2m	8	Apply	5
2.D	Analyze the importance of flywheel and governor with respect to smooth functioning of an engine.	8	Analyze	5